COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

COVERING CYCLES AND k-TERM DEGREE SUMS

MEKKIA KOUIDER and ZBIGNIEW LONC

Received September 29, 1994

We show that if $\sum_{x \in S} \deg_G x \ge |G|$, for every stable set $S \subseteq V(G)$, |S| = k, then the vertex set of G can be covered with k-1 cycles, edges or vertices. This settles a conjecture by Enomoto, Kaneko and Tuza.

Let $X \subseteq V(G)$. Denote by $\alpha(X)$ the largest cardinality of a stable set of G contained in X. For $\alpha(X) \ge k$ define

$$\sigma_k(X) = \min \left\{ \sum_{x \in S} \deg_G x : S \subseteq X \text{ is a stable set in } G \text{ and } |S| = k \right\}.$$

We always denote by n the order of G.

In [3] Enomoto, Kaneko and Tuza conjectured that if $\sigma_k(V(G)) \geq n$ or $\alpha(V(G)) < k$ then the vertex set of G can be covered by k-1 cycles, edges or vertices. Note that for k=2 this statement is just the theorem by Ore [5] on Hamiltonian cycles. The case of k=3 was shown by Enomoto, Kaneko, Kouider and Tuza [2].

In this paper we settle the above conjecture in the general case, i.e. for every $k \geq 2$. The basic idea of the proof is to show a more general theorem then the conjecture of Enomoto, Kaneko and Tuza (see Theorem 1). This way we are able to use a stronger inductive hypothesis in our inductive reasoning.

It has to be mentioned here that a weaker statement:

If the minimum degree of a graph is at least n/k then G can be covered by k-1 cycles, edges or vertices

was previously considered too. Obviously it is a generalization of a theorem by Dirac [1] (the case k=2). For k=3 it was shown by Enomoto, Kaneko and Tuza

Mathematics Subject Classification (1991): 05 C 38, 05 C 70

[3] and for every $k \ge 2$ by Kouider [4]. The method used in [4] is different than ours and much more complicated.

Denote consecutive vertices of a fixed path P by $p_1,...,p_m$. Define $[p_r,p_s[=\{p_r,...,p_{s-1}\}$ (in particular $[p_r,p_s[=\emptyset$ when $r\geq s$). The sets $]p_r,p_s[$, $]p_r,p_s[$ and $[p_r,p_s]$ are defined analogously. For $Q\subseteq P-\{p_1\}$ (respectively $Q\subseteq P-\{p_m\}$) let $Q^+=\{p_{i+1}:p_i\in Q\}$ (resp. $Q^-=\{p_{i-1}:p_i\in Q\}$).

Let us start with the following generalization of the Ore theorem.

Lemma 1. Let G be a graph on n vertices and let $X \subseteq V(G)$. If $\sigma_2(X) \ge n$ or X is a clique then X can be covered with a cycle, an edge or a vertex of G.

Proof. As, by assumption, X must be contained in one of the components of G, we can suppose that G is connected. Let $P = (p_1, ..., p_m)$ be a path in G with both ends in X containing the largest possible number of vertices from X. Define $A = (\Gamma_P(p_1))^-$ and $B = \Gamma_P(p_m)$.

We can assume that the set $\{p_1, p_m\}$ is stable and $\Gamma_{G-P}(p_1) \cap \Gamma_{G-P}(p_m) = \emptyset$. Otherwise P is contained in a cycle so, if $X \subseteq P$, we are done or, if $X \not\subseteq P$, P can be extended contradicting to the maximality of P. If $A \cap B = \emptyset$ then

$$n \le \deg_G p_1 + \deg_G p_m = (|A| + |\Gamma_{G-P}(p_1)|) + (|B| + |\Gamma_{G-P}(p_m)|)$$
$$= |A \cup B \cup \Gamma_{G-P}(p_1) \cup \Gamma_{G-P}(p_m)| < n$$

because $p_m \notin A \cup B \cup \Gamma_{G-P}(p_1) \cup \Gamma_{G-P}(p_m)$, a contradiction.

Thus $A \cap B \neq \emptyset$ so P is contained in a cycle. If $X \not\subseteq P$ then, by the connectivity of G, P can be extended, a contradiction with the maximality of P. Hence $X \subseteq P$ is contained in a cycle.

Here is the main result of the paper. Note that for X = V(G) we get the conjecture of Enomoto, Kaneko and Tuza.

Theorem 1. Let G be a graph on n vertices and let $X \subseteq V(G)$. If $\sigma_k(X) \ge n$ or $\alpha(X) < k$ then X can be covered with k-1 cycles, edges or vertices of G.

Proof. We proceed by induction on k. For k=1 the theorem is trivially true and for k=2 it is shown in Lemma 1.

We can assume that the minimum degree of a vertex in X is greater than 1. Indeed, suppose $\deg_G z=1$, for some $z\in X$. Denote by y the neighbour of z. One can easily check that either $\sigma_{k-1}(X-\{y,z\})\geq n-1$ or $\alpha(X-\{y,z\})< k-1$. The theorem follows by the inductive hypothesis applied for $X-\{y,z\}\subseteq V(G)-\{z\}$. If $\deg_G z=0$, for some $z\in X$ then obviously either $\sigma_{k-1}(X-\{z\})\geq n-1$ or $\alpha(X-\{z\})< k-1$. We are done again by the induction hypothesis.

Let $P = (p_1, ..., p_m)$ be a path in G with both ends in X containing the largest possible number of vertices from X. Define $A = (\Gamma_P(p_1))^-$ and $B = (\Gamma_P(p_m))^+$. It suffices to show the theorem in the case when every component of G contains some vertex of X because the components without vertices of X are inessential in our coverings (so they contain no neighbours of X). Consider three cases.

Case 1. G is disconnected.

Let W be some component of G and $X' = X \cap W$. Define p to be the smallest integer such that

(1)
$$\sigma_p(X') \ge |W| \quad \text{or} \quad \alpha(X') < p.$$

Since (1) holds for p=k, p is well-defined. Obviously $p \geq 2$. Moreover p < k for otherwise $\sigma_{k-1}(X') < |W|$ so for every $x \in X - X'$, $\deg_{G-X'} x = \deg_G x \geq n - \sigma_{k-1}(X') > |G-W|$, a contradiction.

Apply the induction hypothesis for $X' \subseteq V(W)$. By (1) we can cover X' by p-1 cycles, edges or vertices. On the other hand, by the minimality of p,

(2)
$$\sigma_{p-1}(X') < |W| \quad \text{and} \quad \alpha(X') \ge p - 1.$$

Since $\sigma_k(X) \ge n$ or $\alpha(X) < k$, either $\sigma_{k-p+1}(X-X') \ge |G-W|$ or $\alpha(X-X') < k-p+1$. By the induction hypothesis for $X-X' \subseteq G-W$, X-X' can be covered with k-p, cycles, edges or vertices. Consequently, X can be covered by k-1 cycles, edges or vertices.

Case 2. $A \cap B = \emptyset$ and G is connected.

Define r (resp. s) to be the largest (resp. the smallest) index such that either there is a path from p_1 to p_r (resp. from p_m to p_s) internally disjoint from P or there is an edge with one end in p_r (resp. in p_s) and the other one in A (resp. in B).

Note that for every $x \in (X-P) \cup]p_r, p_s[$,

$$\Gamma_G(x) \cap (A \cup \Gamma_{G-P}(p_1)) = \emptyset$$
 and $\Gamma_G(x) \cap (B \cup \Gamma_{G-P}(p_m)) = \emptyset$.

Otherwise we get a contradiction either with the definitions of r or s or with the maximality of P. Moreover, as G is connected $\Gamma_{G-P}(p_1) \cap \Gamma_{G-P}(p_m) = \emptyset$. Otherwise, for any $z \in \Gamma_{G-P}(p_1) \cap \Gamma_{G-P}(p_m)$, $P \cup z$ forms a cycle C so either P can be extended or all elements of X belong to the cycle C.

Let $G' = G - (A \cup B \cup \Gamma_{G-P}(p_1) \cup \Gamma_{G-P}(p_m))$ and $X' = X - ([p_1, p_r] \cup [p_s, p_m])$. Note that $X \cap (\Gamma_{G-P}(p_1)) \cup \Gamma_{G-P}(p_m)) = \emptyset$ because otherwise P can be extended.

If $\alpha(X') \leq k-3$ then, by the induction hypothesis X' can be covered by k-3 cycles, edges or vertices. Otherwise, let $\{x_1,...,x_{k-2}\}$ be any stable subset of X'. Since the set $\{x_1,...,x_{k-2},p_1,p_m\}\subseteq X$ is stable in G,

$$n \le \sum_{i=1}^{k-2} \deg_G x_i + \deg_G p_1 + \deg_G p_m$$

$$= \sum_{i=1}^{k-2} \deg_{G'} x_i + |A| + |\Gamma_{G-P}(p_1)| + |B| + |\Gamma_{G-P}(p_m)|$$

$$\sum_{i=1}^{k-2} \deg_{G'} x_i \ge n - (|A| + |\Gamma_{G-P}(p_1)| + |B| + |\Gamma_{G-P}(p_m)|)$$

$$= n - |A \cup \Gamma_{G-P}(p_1) \cup B \cup \Gamma_{G-P}(p_m)| = |G'|,$$

as $A \cap B = \emptyset$. By the induction hypothesis, X' can again be covered by k-3 cycles, edges or vertices. Since $[p_1, p_r] \cup [p_s, p_m] \supseteq X - X'$ can be covered by 2 cycles or edges, the theorem follows.

Case 3. $A \cap B \neq \emptyset$ and G is connected.

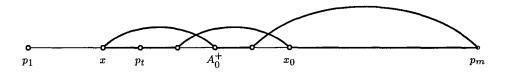
Let $x_0 \in A \cap B$. Note that x_0 has no neighbours in X - P for otherwise P can be extended. Define $A_0^+ = (\Gamma_G(x_0))^+ \cap [p_1, x_0[$ and $A_0^- = (\Gamma_G(x_0))^- \cap [x_0, p_m]$. Let t be the smallest integer such that $[p_t, p_m]$ can be covered by one cycle. Denote this cycle by C. Clearly $x_0 \in C$.

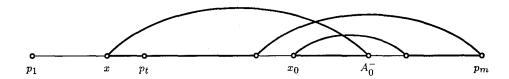
Let
$$G' = G - (A_0^+ \cup A_0^- \cup \Gamma_{G-P}(x_0) \cup \{p_m\})$$
 and $X' = X - C$.

We claim that, for $x \in X'$,

(3)
$$\Gamma_G(x) \cap (A_0^+ \cup A_0^- \cup \Gamma_{G-P}(x_0) \cup \{p_m\}) = \emptyset.$$

Suppose it is not true. Then, for $x \in P - C$, we get a contradiction with the definition of t or the maximality of the path P (see Figure 1) and for $x \notin P$, a contradiction with the maximality of the path P (see Figure 2). We have shown that $\Gamma_G(X') \subseteq V(G')$.





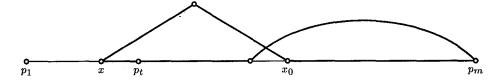
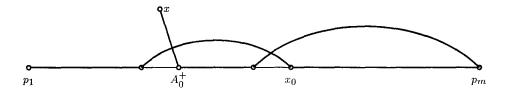


Figure 1



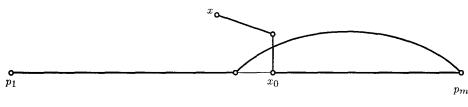


Figure 2

If $\alpha(X') < k-1$ then we are done by induction so suppose that $\alpha(X') \ge k-1$. Let $\{x_1,...,x_{k-1}\}$ be any stable set in X'. The set $\{x_0,x_1,...,x_{k-1}\}$ is stable too by (3) because $x_0 \in A_0^-$. Since $\sigma_k(X) \ge n$,

$$\sum_{i=1}^{k-1} \deg_{G'} x_i = \sum_{i=1}^{k-1} \deg_{G} x_i \ge n - \deg_{G} x_0$$
$$= n - |A_0^+ \cup A_0^- \cup \Gamma_{G-P}(x_0) \cup \{p_m\}| = |G'|.$$

By the induction hypothesis X' can be covered by k-2 cycles, edges and vertices. Since $X-X'\subseteq C$, the proof is complete.

Analyzing the proof of Theorem 1 one can verify that the following is true.

Theorem 2. Let G be a 2-edge-connected graph on n vertices and let $X \subseteq V(G)$. If $\sigma_k(X) \ge n$ or $\alpha(X) < k$ then X can be covered with k-1 cycles of G.

References

- G. A. DIRAC: Some theorems on abstract graphs, Proc. London Math. Soc., 2 (1952), 69-81.
- [2] H. ENOMOTO, A. KANEKO, M. KOUIDER, and Zs. Tuza: Degree sums and covering cycles, Journal of Graph Theory, 20 (1995), 419–422.
- [3] Н.ЕNOMOTO, А. KANEKO, and Zs. Tuza: P_3 -factors and covering cycles in graphs of minimum degree n/3, Colloquia Mathematica Societatis János Bolyai 52. Combinatorics, Eger (Hungary), North Holland (1988), 213–220.

412 M. KOUIDER, Z. LONC: COVERING CYCLES AND k-TERM DEGREE SUMS

- [4] M. KOUIDER: Covering vertices by cycles, Journal of Graph Theory, 18 (1994), 757-776.
- [5] O. Ore: Note on Hamiltonian circuits, Amer. Math. Monthly, 67 (1960), 55.

Mekkia Kouider

Zbigniew Lonc

Laboratoire de Recherche en Informatique Université de Paris-Sud Orsay, France Institute of Mathematics Warsaw University of Technology Warsaw, Poland